

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION IX

75 Hawthorne Street San Francisco, CA 94105-3901

April 15, 1998

MEMORANDUM

SUBJECT: Field Sampling Plan, Bureau of Indian Affairs Roads Shop Fuel Oil Pipeline.

Duck Valley Indian Reservation, Owyhee, Nevada (EPA QA Office Document

Control Number [DCN] WATR172S98VSF2)

FROM: Mathew C. Plate, Environmental Scientist Math C Plate Quality Assurance Office, PMD-3

THROUGH: Vance S. Fong, P.E., Manager Januahar Fory
Quality Assurance Office, PMD-3

TO:

Alisa Wong, Project Officer

Groundwater Office, WTR-9

The subject field sampling plan (FSP), prepared by MSE Technology Applications, Inc. (MSE) for Shoshone-Paiute Tribes and dated April 1998, was reviewed. This project represents a continuation of efforts started by the Bureau of Reclamation. A FSP prepared by the Bureau of Reclamation was last reviewed under the DCN of WATR106S95VSF2. The review was based on guidance provided in "EPA Requirements for Quality Assurance Project Plans for Environmental Data Operations" (EPA QA/R-5, August 1994), "Preparation of a U.S. EPA Region 9 Field Sampling Plan for EPA-Lead Superfund Projects" (9QA-05-93, October 1994), "Guidance for the Data Quality Objectives Process" (EPA QA/G-4, September 1994), and comments provided by the Quality Assurance Office on March 18, 1998.

The subject FSP is approved by the USEPA Region 9 Quality Assurance Office. All of the previous concerns pertaining to the FSP have been adequately addressed. The previous EPA concerns and comments appear in bold type and the evaluations of the response to comments follow in normal type. Also the numbering of EPA memorandum (March 18, 1998) was retained in this memorandum.

Major Concerns

1. [Section 3.0, Project Data Quality Objectives] Section 3.0 states that "[T]he quantitative aspect of the data quality objectives (DQO) process typically uses statistics to design the most efficient field investigation controlling the possibility of

making an incorrect decision"; however, the statistical reasoning and the acceptable level of error that an incorrect decision will be made are not provided. The FSP should also indicate, at least in qualitative terms, the consequences of making a wrong decision, e.g., unnecessarily removing soil or leaving a source of contamination which may affect drinking water and human health, etc.

This concern has been satisfactory addressed. Section 3.1 now includes information on the consequences of decision errors. However, the discussion of the process used to select the sampling frequency and sampling and analytical quality control parameters is not complete.

2. [Section 3.3, Expected Data Quality] Section 3.3 states that the investigation is focused on whether the fuel oil is present in the soil at levels requiring soil removal and treatment, and states that the action level will be set at 100 ppm of volatile compounds on the Photo Ionization Detector (PID) for screening purposes and will be used as the indicator that the fuel oil is present. It is not clear whether soil will be removed if soil contains concentrations of diesel above the 100 ppm action limit or if this action level is established to decide whether to collect additional samples only. This issue should be clarified. The source of the 100 ppm action level should be cited in the FSP.

This concern has been addressed. Section 3.4.1 discusses how the 100 ppm action level was selected and states that "Soils will be considered contaminated if TPH-DRO is greater than 100 ppm. Areas where contamination is detected will be considered for removal during the BIA cleanup."

3A. [Section 4.1, Soil Sampling Locations; Section 6.1.2, Calibration of Field Equipment; Appendix C, PID Standard Operating Procedure] The assumption is made implicitly that the PID Microtip instrument is appropriate to screen fuel oil samples in soil. Although the reviewer is not directly familiar with this specific instrument, fuel oil represents an even less volatile carbon cut than diesel (which is usually approximately C₁₂-C₁₆), and the lack of volatile compounds could present sensitivity problems for the instrument. Since any contamination in the soil has had an opportunity to migrate, degrade and weather, its detection will be further complicated. The FSP should discuss the appropriateness and sensitivity of the PID as a screening tool. If samples are normally heated before they are introduced (which is not evident from review of the SOP) this would improve sensitivity, but it is not clear to what extent this would affect the analyses.

As the PID field screening portion of this sampling event has been eliminated, this comment is no longer pertinent.

3B. Section 6.1.2 cites the manufacturer's instructions in Appendix C for calibration of field instrumentation. The calibration procedure in Appendix C calls for the use of a gas cylinder, however, fuel oil is a liquid at room temperature, and is not available in gas cylinders. The FSP should discuss how the instrument calibration procedures will be modified to more accurately reflect the contaminant of concern. Either Section 6.1.2 or the SOP (or preferably both) should specify the calibration standard concentrations to be used for the project.

As the PID field screening portion of this sampling event has been eliminated, this comment is no longe pertinent.

4. [Section 5.0, Request for Analyses; Section 10.0, Quality Control] Section 5.0 specifies one sample for laboratory quality control (QC) purposes and two samples for field duplicates. Since there are more than twenty samples projected for collection, the number of laboratory QC samples should be increased to two, and the number of field duplicate samples should be increased to three. Laboratory QC samples must be collected at a minimum of 5 percent, while field duplicate samples should be collected at a minimum of ten percent. Laboratory QC samples and field duplicate samples should be identified in Table 5-1, Request for Analysis Table for the FOL (Fuel Oil Line) Investigation. In addition, Section 10.0 should be expanded to specify the frequency of field duplicates and laboratory QC samples. The applicability of equipment rinsates and field blanks should also be discussed in Section 10.0.

This concern has been addressed. The Request for Analysis Table has been modified to included the correct number of duplicate and QC samples.

Concerns

1A. [Section 3.4, Data Quality Indicators; Table 3.1, Data Quality Indicators] Table 3.1 specifies "analysis-specific detection limits" for the reporting limit for the total petroleum hydrocarbon (TPH) analysis. The detection limit should be based on project needs and specified in the CRF. If CRF limits are acceptable, this should be so stated.

This concern has been addressed. The detection limit of 10 ppm is specified for TPH-DRO.

1B. Section 3.4 identifies a number of data quality indicators (DQIs), including action levels, detection limits, accuracy, precision, representativeness, and comparability. The discussion regarding comparability specifies a QA objective of 100 percent. It

is unclear how this would be calculated. It should be noted that the DQIs comparability and representativeness are considered qualitative, not quantitative, DQIs. In addition, Section 3.4 should be expanded to discuss completeness, a quantifiable DQI. The referencing of QC limits defined in the Client Request Form (CRF) for TPH-diesel would be appropriate if these are suitable for project needs.

This concern has been addressed. A discussion of the DQI completeness has been added and discussion of the other DQIs have been properly amended.

2. [Section 3.5.2, Data Validation] The FSP should indicate whether all or a percentage of the data will be validated. For this project, it is recommended that 100% of the confirmatory data be validated. This section should also identify the party performing data validation.

This concern has been addressed. The plan states that review of laboratory QC reports will be sufficient to meet the data quality needs of this project. It should be noted that the Quality Assurance Office may conduct a more in depth review of data from this project to fulfil internal requirements for laboratory oversight.

Comments

1. [Section 1.4, Project Organization] Section 1.4 includes a table which identifies personnel involved in the project. The Quality Assurance Manager for Region 9 is Vance Fong, rather than David Taylor. The plan should be changed.

Also, since Vance Fong is on the distribution list for the final FSP, David Taylor's name can be removed from the distribution list. The FSP can be mailed to Dr. Taylor.

This comment has been addressed.

2. [Section 6.0, Field Methods and Procedures] Section 6.0 states that the laboratory will be notified of the upcoming sampling event. Note that the Regional Sample Control Coordinator (RSCC) should be called to schedule analysis, not the laboratory.

This comment has been addressed.

3. [Section 6.2, Soil Sampling] To avoid any confusion in the field, the last sentence of Section 6.2 should state that "[E]very tenth sample will be sent to the EPA Region IX laboratory for analysis for the 3/4-inch FOL."

As the PID field screening portion of this sampling event has been eliminated, this comment is no longe pertinent.

4. [Section 9.3, Sample Chain of Custody Forms and Custody Seals] It is recommended that example chain of custody (COC) forms and custody seals be included in the FSP.

This comment has been addressed.

Questions or comments regarding this review should be referred to me at (415) 744-1493.